Constant-time Discrete Gaussian Sampling

نویسندگان

  • Angshuman Karmakar
  • Sujoy Sinha Roy
  • Oscar Reparaz
  • Frederik Vercauteren
  • Ingrid Verbauwhede
چکیده

Sampling from a discrete Gaussian distribution is an indispensable part of lattice-based cryptography. Several recent works have shown that the timing leakage from a non-constant-time implementation of the discrete Gaussian sampling algorithm could be exploited to recover the secret. In this paper, we propose a constant-time implementation of the Knuth-Yao random walk algorithm for performing constanttime discrete Gaussian sampling. Since the random walk is dictated by a set of input random bits, we can express the generated sample as a function of the input random bits. Hence, our constant-time implementation expresses the unique mapping of the input random-bits to the output sample-bits as a Boolean expression of the random-bits. We use bit-slicing to generate multiple samples in batches and thus increase the throughput of our constant-time sampling manifold. Our experiments on an Intel © i7-Broadwell processor show that our method can be as much as 2.4 times faster than the constant-time implementation of cumulative distribution table based sampling and consumes exponentially less memory than the Knuth-Yao algorithm with shuffling for a similar level of security.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Sampling over the Integers: Efficient, Generic, Constant-Time

Sampling integers with Gaussian distribution is a fundamental problem that arises in almost every application of lattice cryptography, and it can be both time consuming and challenging to implement. Most previous work has focused on the optimization and implementation of integer Gaussian sampling in the context of specific applications, with fixed sets of parameters. We present new algorithms f...

متن کامل

Presentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition

Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...

متن کامل

Presentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition

Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...

متن کامل

Optimal Sampling and Reconstruction of NMR Signals with Time-Varying Gradients

Fundamental operations of nuclear magnetic resonance (NMR) imaging can be formulated, for a large number of methods, as sampling the object distribution in the Fourier spatial-frequency domain, followed by processing the digitized data to produce a digital image. In these methods, controllable gradient fields determine the points in the spatialfrequency domain which are sampled at any given tim...

متن کامل

Solving the Shortest Vector Problem in $2^n$ Time via Discrete Gaussian Sampling

We give a randomized 2n+o(n)-time and space algorithm for solving the Shortest Vector Problem (SVP) on n-dimensional Euclidean lattices. This improves on the previous fastest algorithm: the deterministic Õ(4n)-time and Õ(2n)-space algorithm of Micciancio and Voulgaris (STOC 2010, SIAM J. Comp. 2013). In fact, we give a conceptually simple algorithm that solves the (in our opinion, even more int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018